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Direct Correlation Function 
Properties of Liquid Metals Near 
Freezing 

J. M. BERNASCONI and N. H. MARCH 

Theoretical Chemistry Department, University of Oxford, 1 South Parks Rd., 
Oxford OX1 3 TG, England 

(Rrceivrd July 2, IY8.5) 

Motivated by the prediction of the Percus-Yevick hard sphere solution that, for dense liquids, 
the ratio R = c(r = O ) / E ( q  = 0) is very near to unity, c(r)  being the direct correlation function 
and E(q) its Fourier transform, this ratio has been calculated from diffraction plus thermo- 
dynamic data for some fifteen liquid metals near their freezing points. It is found that 
0.2 < R < 1.3, but for the liquid alkalis, the noble metals and the first row transition metals 
chosen, R is near to unity. This is to be contrasted with R - 2 for liquid argon near the triple 
point. 

The polyvalent metals Ga,  Pb and Sn, with the smallest values of R, are plainly totally at 
variance with the hard sphere prediction. However, R is near to unity for Na, K and R b  and yet 
it is known fron neutron inelastic scattering that Rb exhibits a collective mode and is therefore 
quite different from a hard sphere liquid also. In fact, by examining long-range damping in 
E(q) for Na and Pb. we conclude that P b  has the harder core of these two metals. 

Finally it is argued that for Pb, c(r )  remains negative and non-zero just outside the “core” 
diameter and this then accounts immediately for the low value of R ,  as  also in the cases of 
Ga and Sn. In contrast, for argon c ( r )  has passed through a node before or at the core diameter, 
leading to R much greater than unity. 

1 INTRODUCTION 

In structural theories of liquids, the direct or Ornstein-Zernike correlation 
function c(r)  continues to play an important role. This function is related 
to the pair distribution function g(r )  of the liquid through the defining 
equation 

h(r)  = c(r)  + p c( Ir - r’l)h(r’) dr’ 
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170 J .  M. BERNASCONI AND N. H. MARCH 

where the total correlation function h(r) is simply g ( r )  - 1, while p is the 
atomic number density. 

As an example, for a simple monatomic liquid like argon, a reasonable 
approximation to c(r)  was given in the work of Woodhead-Galloway 
et al.' as 

where $,ong-range(i') is equivalent to the assumed pair potential 4(1') outside 
the hard core of diameter 6. Using the Percus-Yevick ~ o l u t i o n ~ . ~  for 
Chard sphere(i') = chs(r)  and noting that this is identically zero outside i' = 0 
in this approximate theory, it is evident from Eq. (1.2) that 

However, we presently know of no decisive evidence that Eq. (1.3) is true 
for liquid metals, on which we focus attention in the present paper. 

Bhatia and March4 noted that, in the case of the Percus-Yevick solution 
for hard spheres 

(1.4) - PY c hs (0) = 1 + chs(i' = 0) 

where C ( q )  is the Fourier transform of c(r) defined through 

or in terms of the liquid structure factor S ( q ) :  

Now the hard-sphere Percus-Yevick solution yields 

where y is the packing fraction (n/6)pa3. For many simple liquids near the 
melting temperature, q N 0.45 and inserting this into Eq. (1.7) yields a value 

Although, as we shall confirm below, this is a reasonable estimate of 
c(i' = 0) for liquid argon, the experimental value being -33, the relation 
to F(q = 0) given in Eq. (1.4) for hard spheres fails. This implies that the 

of - -40. 
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STRUCTURE OF LIQUID METALS 171 

attractive tail &ng range(r) makes an important contribution to t ( 4  = 0). 
In fact, whereas Eq. (1.4) yields the ratio 

c(I' = 0) 
Z(4 = 0) 

R = -  

to be approximately unity from the Percus-Yevick hard sphere solution, 
as I c(r = 0) I 9 1 for argon near the melting temperature, we find in practice 
that R - 2. 

Turning from liquid argon to liquid metals, we find, to us somewhat 
surprisingly, that the hard-sphere value of c(r = 0) turns out to be a 
reasonable one for metals also. Though experimental errors are quite 
substantial, -c(r = 0) turns out to fall in the range 34-50, with the exception 
of Cu at a value of 60, to be compared with the value of 40 for hard spheres. 

However, -?(q = 0) varies more widely, as expected from the above 
discussion of argon, and for the liquid metals considered in the present 
work, the range is from -40-200. In this paper, though we utilize liquid 
argon for purposes of comparison, the major interest is in a variety of 
liquid metals. 

2 CALCULATION OF R = c ( r  = O ) / E ( q  = 0) FOR LIQUID METALS 
FROM EXPERIMENT 

Values of c(r = 0) for liquid metals near their freezing points have been 
calculated from experimental diffraction data for S(4), and these results 
are recorded in Table I. Z(4 = 0) obtained from experimental data on the 
isothermal compressibility is also recorded there. The final column of 
Table 1 gives the ratio R defined in Eq. (1.8). 

Errors in -c(r = 0), -Z(q  = 0) and hence R have been estimated by 
using different sets of experimental data. This demonstrates that errors 
in R can be substantial; at times as great as k0.2. On this basis alone, 
therefore, one would find it difficult to distinguish the results of some nine 
of the fifteen metals in Table I from the hard sphere prediction R = 1. 
However, though we shall discuss the problem of obtaining reliable data 
for R a little further immediately below, there can be no doubt that the 
liquid metals Ga, P b  and Sn have R < 1, and that, as already discussed, the 
case of argon included in Table I for purposes of comparison with the 
metals, has R substantially greater than unity. 

The problem of obtaining reliable data can be seen by considering what 
region of the structure factor S(4)  dominates the value of c(r = 0). From 
Eq. (lS), when r = 0 one has 
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172 J. M. BERNASCONI A N D  N. H. MARCH 

1 Pa= 

Even allowing for the factor q2 in the integrand of Eq. (2.1), it turns out 
that, since E(q) is large and negative at small q,  the integral in Eq. (2.1) is 
dominated by the region of q well inside the first peak of S(q) (cf. Appendix 
A1 also). It is this relatively small angle scattering region which is still the 
least well studied region of the structure factor in liquid metals to date. 

Though we shall return to a discussion of why R is very small in Ga, Pb  
and Sn below, we can see why, from the available data, R is low in these 
metals. As is demonstrated in Appendix A2, a localized form of Z(q)/?(O), 
which in turn suggests a long-range pair potential, results in a low value 
of the ratio R. 

From the standpoint of the data for this ratio alone, as recorded in Table I, 
it might seem tempting to conclude that the liquid alkali metals Na, K 
and Rb are hard-sphere liquids. However, it is well known for liquid Rb 
from the neutron inelastic scattering studies of Copley and Rowel6 that a 
well defined collective mode exists for this metal; a feature which is, of 
course, totally foreign to any hard-sphere liquid. Hence it is already plain 
that R near to unity is a necessary but not a sufficient condition to conclude 
that a liquid metal is hard-sphere like. 

TABLE 1 

Ratio : direct correlation function c(r)  at r = 0 divided by E(q), its 
Fourier transform, evaluated at q = 0, near melting temperature. 

Liquid metal - c(r = 0) - ?(q = 0 )  R = c(r  = O ) / Z ( q  = 0) 

~ ~ 5 . 6 . 7  43 41 1 .o 
~ 5 . 6 . 7  42 40 1 .o 
Rb‘ 45 42 1.1 
Csb.7 50 38 1.3 
~ ~ 8 . 9  60 47 1.3 
Ag9 51 53 1 .o 
Au9 35 38 0.9 

31 39 0.8 
45 54 0.8 

Mg6.10 

Gal2 34 200 0.2 
Pb” 44 110 0.4 
~ ~ 1 0 . 1 3  40 140 0.3 

Fe9 46 48 1.0 
~ ~ Y . 1 4  41 50 0.8 
co9 35 50 0.7 

A16.1 1 

For comparison, we note that for liquid argon the values are 

- c ( r  =0) = 33, -Z(q = 0) = 17 and R- 2. 
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STRUCTURE OF LIQUID METALS 173 

3 USE OF SIMPLE COLLECTIVE MODE MODEL FOR LIQUID Rb 

To press the above point, let us consider briefly in this section the prediction 
of a simple collective mode model for Rb. The arguments underlying this 
model can be traced back to Feynman’s work on the Bose liquid 4He at 
absolute zero. One constructs a dynamical structure factor S(q, o), which 
when integrated over all frequencies yields the static structure factor S(9) 
and which satisfies, for a classical liquid 

where M is the ionic mass. 

w(9), exhausts the sum rule (3.1), i.e. one inserts into Eq. (3.1) the ansatz 
Following Feynman, one assumes that the collective mode, with dispersion 

S(q, w )  = 3S(q)C&w - 4 q ) )  + d ( 0  + w(q)l (3.2) 
to obtain the relation between structure factor and collective mode dispersion 
relation w(q): 

In the limit q tends to zero, w(q) + u,q, where U ,  is the velocity of sound, 
whereas the right-hand side of Eq. (3.3), when one uses the result of fluctua- 
tion theory that 

with K ,  the isothermal compressibility and y the ratio of the specific heats 
cp/c , ,  yields this same value only if y is equal to unity. In practice, this is not 
serious since y is around 1.2 to 1.3 for many liquid metals near freezing, so 
that the formula (3.3) is useful at least in the long wavelength limit in such 
cases. 

This is the point at which we should note that a collective mode has been 
observed in Pb17 as well as in Rb, and an approximate calculation of the 
ratio R from the measured dispersion curves o ( q )  for these two metals can 
yield some further insight into the problem. In Figure 3.1 the measured 
dispersion curves of the two liquid metals are reproduced. The point we 
want to stress here is that Pb  is more dispersive than Rb in that departures 
from the long wavelength, or small q, limit w(q) = v,q occur more quickly 
for Pb  than for Rb. The effect of this on the calculated value for F(q) according 
to Eq. (3.3) is to produce a more localized E(q) for Pb than for Rb, which 
reduces the ratio R as already noted (see also Appendix A, Section A2). 
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"0 1 9.(A-', 2 
FIGURE 3.1 Collective mode dispersion curves extracted from neutron inelastic experiments 
on (a) Rb and (b) Pb. 

The long wavelength limiting form 4 4 )  = c,4, with rr the velocity of sound in the liquid 
metal is also shown. What is important in the present context is that Pb departs earlier from the 
long wavelength limiting behaviour than does Rh. From Eqn. (3.3), this in turn implies that 
E(4) is more localized at small q for Pb than for Rb. 
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STRUCTURE OF LIQUID METALS 175 

We should caution, however, that the above arguments are meant only 
to provide some additional insight into the differences between P b  and Rb; 
they are not quantitatively valid as Eq. (3.3), taken quite literally, would 
overestimate by about a factor of 2 the values of I c(r = 0) 1. 

4 VALUE OF R AND ITS CONSEQUENCE FOR THE DIRECT 
CORRELATION FUNCTION c ( r )  

We turn now to examine specifically the three liquid metals in Table I 
which, beyond reasonable doubt, in spite of large experimental errors, have 
the ratio R very different from, and all less than, unity. 

To see how such a situation can arise, we return to Eq. (1.1) and put 
I’ = 0. Since, for a classical liquid, we know that g ( r  = 0) = 0, and hence 
h(r = 0) = -1, we find 

-1 = c(r = 0) + p c(r’)[g(r’) - 11 dr’. (4.1) s 
But p c(r‘) dr‘ = ?(q = 0) and hence 

?(q = 0) = 1 + c(r = 0) + p g(r)c(r)  dr. (4.2) 5 
This Eq. (4.2) is the formally exact generalization of the Percus-Yevick 
hard sphere result (1.4). This latter result follows, almost trivially, from 
Eq. (4.2), when we note that for hard spheres y(r) = 0 inside the hard core 
diameter, whereas c:p(r) = 0 outside 0, and hence the integral in Eq. (4.2) 
is identically zero for this case. 

Rearranging Eq. (4.2), we can write for the ratio R in Eq. (1.8): 

(4.3) 

Plainly, by inspection of Table I, the term 1/2(q = 0) is small, and appreciable 
deviation of R from unity must be sought in the final term in Eq. (4.3). 
Hence, we will concentrate on this term for the three liquid metals with very 
small R and also, for purposes of comparison, for argon with R - 2. 

Since in real liquids, g ( r )  is still practically zero inside a core diameter, 
and since C(q = 0) is negative near freezing, R can only be appreciably less 
than unity from Eq. (4.3) if c(r )  has a negative region of appreciable amplitude 
outside the diameter 0. Conversely, R for Ar can only be appreciably greater 
than unity if c(r) has already become positive either at, or inside, the hard 
core diameter. This is schematically depicted in Figure 4.1. While a node in 
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176 J .  M. BERNASCONI AND N.  H. MARCH 

FIGURE 4. I Schematic forms of direct correlation function c(r)  

Solid curve depicts the Percus-Yevick hard sphere form. 
Dashed curve is schematic form for liquid argon near triple point 
Dotted curve is schematic form for liquid Pb, Sn and Ga. 

Note that for argon the node in c(r )  is at. or inside, the hard core diameter o. In contrast. for 
liquid Pb, Sn and Ga,  c ( r )  has a negative region of significant magnitude outside the hard core 
diameter. The precise form of c ( r )  outside o IS not presently known for these three metals, either 
from theory or  experiment. 

c ( r )  is an important structural feature for liquid argon, we know of no 
definitive proof, either from theory or experiment for liquid metals, that one 
or more nodes exist in c(r).  However, provided Eq. (1.3) again comes into 
its own at sufficiently large I’, the oscillatory behaviour of potentials in 
liquid metals would imply a succession of nodes in C ( T )  at sufficiently large 
distances. 

5 CORE HARDNESS AND LONG-RANGE OSCILLATIONS IN E ( q )  

It is known from general Fourier transform theory that a sharp edge in r 
space at non-zero r will lead to long-range oscillations in q space. Thus, the 
Percus-Yevick c(r )  for hard spheres, with a marked discontinuity at CJ as 
depicted in Figure 4.1, will lead to pronounced long-range oscillations in 
Y q ) .  All real liquids will be softer than this, and one can compare the damping 
of the long-range oscillations as observed in diffraction experiments with 
the hard sphere results. 
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STRUCTURE OF LIQUID METALS 177 

FIGURE 5.1 
of c(r). 

Shows large q oscillations in the quantity q2?(q). wlth f(9) the Fourier translbrm 

Hard spheres 
Argon - _ -  

Pb . . . . .  
In the Figure, the independent variable is the reduced wave number q/9p where qp  is the position 
of the first peak in the structure factor S(9). The first peak shown in the Figure is actually the 
second peak occurring in q’?(q) and these first peaks are all scaled to unity for purposes of 
comparison. 

The damping of the successive peaks in 9’?(9) can be represented approximately by a factor 
exp(-q) .  Table I1 indicates that Y is substantially less for Pb and Ar than for Na. This means 
that Pb and Ar must exhibit a more abrupt rise in c(r)  near the hard core diameter than Na;  i.e. 
Pb and Ar are “harder” core liquids than Na. 

The detailed way in which this has been done is outlined in Appendix B, 
Eq. (B4). However, Figure 5.1 shows q22(q) versus q for Ar, Na and 
Pb, compared with a suitable hard sphere curve. Representing the damping 
of the peaks in q2c(q)  by a factor exp( - aq), where a measures how abruptly 
c(r) rises around the core diameter 6, the values of CI thereby deduced, 
discussed in.a little detail in Appendix B, are recorded in Table 11. Of the 
three liquids whose long-range behaviour is depicted in Figure 5.1, it is 
clear that c(r) rises abruptly near 6 in both Pb  and Ar despite the fact that 
R -g 1 for Pb  and R 4 1 for Ar. 

To check that the low values of both CI and R can be reconciled for Pb. we 
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178 J. M .  BERNASCONI AND N. H .  MARCH 

have shown that only a relatively minor softening of the edge in the Percus- 
Yevick hard sphere form of c(r) is required to reduce R to a low value. The 
modelling of liquid Pb  was based on the hard sphere cPY(r) ,  plus a term 
added from I’ = cr to infinity, namely 

c(r) = CPY(I‘), I’ < 0 

The parameter A was used to fit the transform of the above function at 
q = 0 to the experimental value of Z(q  = 0) and hence R,  for Pb. The value 
;1 = 1.2 gives the required ratio R - 0.4. This fairly large value of ;1 ensures 
a rapidly decreasing function for I’ > cr and hence only a slight softening of 
the hard sphere edge in c(v). This demonstrates that E(q = 0) and hence R 
is sensitive to the region of c(r) around I’ = cr. It must be cautioned, however, 
that the above model loses the first peak in S(q) ,  and hence also demonstrates 
the sensitivity of this peak to the precise form of c(r )  around I’ = a. 

6 CONCLUSION AND S U M M A R Y  

For a whole set of liquid metals near freezing, there are clear departures from 
the Percus-Yevick hard sphere prediction R N 1 only for Ga, Pb and Sn. 
However, it has also been clearly demonstrated that R N 1 is far from a 
sufficient condition for a real liquid to be hard sphere-like. Indeed, R is near 
to unity for Rb, but Ga, Pb and Sn as well as the liquid insulator Ar, all of 
which have harder cores than Rb, show large departures from R = 1. 

To gain further insight into the behaviour of the simpler metals, we have 
explored the consequences of a simple collective mode model for both Rb 
and Pb, in which metals neutron inelastic scattering experiments have 
demonstrated the presence of such collective modes. The smaller value of 
R is shown to occur in the metal where the greater collective mode dispersion 
is observed. 

In argon, an important structural feature of c(r)  is the node around the 
hard core diameter. The fact that this node occurs either at, or slightly 
before, the hard core diameter, is shown to be responsible for the large value 
of the ratio R. No liquid metal of the fifteen examined in this work resembles 
this, R being less than 1.3 for them all. For the three metals Ga, Sn and Pb  
with really small values of R,  the rise in c(r)  to zero at or below the core 
diameter in Ar is replaced by a form of c(I‘) with a substantial negative region 
outside the core. 

It would be of considerable interest in these three metals Ga, Pb  and Sn 
if further and more precise diffraction studies could map out C ( F )  accurately 
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STRUCTURE OF LIQUID METALS 179 

outside the hard core. This seems to be an essential prerequisite to attempts 
to extract a potential for liquid metals from experimental structure data, 
along lines proposed by Johnson and March' 8 , 1  and applied very recently 
with considerable successZo to the structure factor S ( q )  obtained from 
computer simulation of liquid Al. 
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Appendix A 
of the direct correlation function 

Schematic representation and modelling 

We collect together here some schematic forms of properties of c(r )  and its 
Fourier transform E(q) that we have used in the main text, together with some 
of the models we have found useful. We divide the Appendix, for convenience, 
into two short sections. 

A1 SCHEMATIC FORMS OF S ( q ) ,  E ( q )  AND q%(q)  

For all the cases we have treated, the schematic forms of S ( q ) ,  ?(q) and 
q2E(q) are as shown in Figure Al. Part (a) is the same schematic form of 
S(q)  for all monatomic liquids; whether metals or insulators such as liquid 
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I80 J .  M. BERNASCONI A N D  N. H. MARCH 

FIGURE A1 Schematic forms of: (a) Structure factor S(q)  versus 4 ;  (b) Fourier 
transform F(q) of direct correlation function c(r )  versus q. 

Main point to be noted here is that the area under the 4'Z(q) curve, which in turn determines 
c(r  = 0), is dominated by the region well inside the first peak of the structure factor S(4), that 
is by q < 4". this latter quantity denoting the position of the first node in F(4). 

(c) q2S(q) versus q. 

argon. The height of the first peak in S(q)  is known to be around 2.8 for 
most monatomic liquids just above their freezing points, a condition 
fulfilled by all the data employed in the present paper. The shape of E(q) 
in Figure Al(b) follows then from E(q) = 1 - S(q)- ' .  The calculation of 
C(Y = 0), recorded for fifteen metals in Table I, involves from Eq. (2.1) the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
3
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



STRUCTURE OF LIQUID METALS 181 

FIGURE A1 (continued) 

integrand q2 t (q )  which is therefore shown schematically in Figure Al(c). The 
important point to note about this integrand is that, when used to evaluate 
C(I .  = 0) in Eq. (2.1), the area between q = 0 and q = q o ,  the value of q at 
which S(q)  is first equal to unity, contributes at least 90 % of the total area. 
The oscillations in E(q) are quite small and their contributions tend to 
cancel. 

A2 SCHEMATIC FORM OF E ( q ) / E ( q  = 0 )  

The experimentally known forms of E(q)/t(q = 0) are contrasted for Ar, for 
which R - 2, and Pb, with R - 0.4, in Figure A2. We find that a localized 
form of t (q) / t (q  = 0) leads to a low value of R, as follows from the fact that 
in Eq. (2.1) we must weight Z(q) by q2 to calculate C(I’  = 0). Such localization 
in q space also suggests a long-range pair potential. 

Appendix B 
damping of oscillations in hard sphere form of E ( g )  

Modelling of core hardness through 

Using the Percus-Yevick hard sphere form of the direct correlation function 
c(Y), namely 

= 0, r > u  
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FIGURE A2 
curve).' * 

Contrasts forms of c'(q)/C(q = 0) for argon (solid curve) and lead (dashed 

and the transform relation 

sin qr 
4nr2 dr, 

the form of C(4) for sufficiently large 4 turns out to be 

cos qc7 , as 4 tends to infinity. -PY c (4)  = K -  
q2 

Thus for hard spheres one would expect that 42c(4) would be relatively 
undamped at large q. This is borne out in Figure 5.1, even though in the 
hard sphere curve there we have made use of computer simulation results. l 2  

Therefore, we shall attempt to model the real ?(4) for the liquids Ar, Na 
and Pb, at large q, by a damped version of the hard sphere 4 4 ) :  

?((4) = ?hs(q) exp(-cc4). 034) 

Then we have calculated the value of a, by first scaling the second peak 
to unity, as in Figure 5.1, and writing 

42E(4) In -%;-- = constant - q. 
4 chs(q) 

Hence to determine the exponent ct measuring the damping of the hard 
sphere peaks, we take the ratio of the peak heights of E(4) for the real liquids 
relative to &(4) from Figure 5.1, - ct being the limiting slope as q tends to 
infinity in a plot of In q2c(q)/chs(q)q2/q. In Table TI, we record that for 
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TABLE 11 

Damping of peaks in experimentally determined 
structure factors. Form of damping factor 

employed in quantity q2E(q) is exp( -aq). 

Liquid Exponent c( in A 

Pb 0.14 
Ar 0.15 
Na >0.65 

I83 

Na, ct > 0.65. This is because a limiting slope was not found within the 
accessible range of q. No difficulties were found with Pb  and Ar; neither is 
there any doubt, of course, that Na is much the most strongly damped of 
these three liquids. 
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